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Abstract. Nonlinear pseudo-Boolean optimization (nonlinear PBO) is
the minimization problem on nonlinear pseudo-Boolean functions (non-
linear PBFs). One promising approach to nonlinear PBO is to first use
a quadratization algorithm to reduce the PBF to a quadratic PBF by in-
troducing intelligently chosen auxiliary variables and then solve it using
a quadratic PBO solver. In this paper, we develop a new quadratization
algorithm based on the idea of the constraint composite graph (CCG).
We demonstrate its theoretical advantages over state-of-the-art quadrati-
zation algorithms. We experimentally demonstrate that our CCG-based
quadratization algorithm outperforms the state-of-the-art algorithms in
terms of both effectiveness and efficiency on randomly generated in-
stances and a novel reformulation of the uncapacitated facility location
problem.

1 Introduction

Nonlinear pseudo-Boolean optimization (nonlinear PBO) refers to the minimiza-
tion problem on nonlinear pseudo-Boolean functions (nonlinear PBFs). Formally,
a PBF is a mapping f : Bn → R that maps each assignment of values to a set of
Boolean variables to a real number. The Boolean variables are restricted to take
a value in B = {0, 1}. A PBF is nonlinear iff it cannot be reformulated as a linear
combination of the Boolean variables. (Nonlinear) PBO asks for an assignment
of values to the Boolean variables that minimizes the value of a (nonlinear) PBF,
i.e., it is the task of computing argmin

x∈Bn f(x). Nonlinear PBO is known to be
NP-hard and subsumes many classic optimization problems, such as MAX-SAT
and MAX-CUT [10]. It has been used in many real-world applications, such as
computer vision [26], operations research and traffic planning [15, 18, 37], chip
design [11], evolutionary computation [38], and spin-glass models [25].

While a lot of research has concentrated on linear PBO (with linear con-
straints) [1, 8, 13, 23, 31, 33, 35], nonlinear PBO has not been very well studied.
There only exist a handful of techniques dedicated to nonlinear PBO, such as
reformulation to 0/1 integer linear programming (ILP) [16], constraint integer
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programming [6], constraint logic programming [7], and graph cuts [26]. Among
these techniques, the most viable approach involves quadratization algorithms,
i.e., reformulating the PBF as a quadratic PBF [3, 21]. A PBF is quadratic iff
it is a sum of monomials in which each monomial is a product of at most two
Boolean variables. Several authors have pointed out the benefits of quadratiza-
tion algorithms over algorithms based on linearization and ILP [4,10,17].

Quadratization algorithms are not only the most viable approach to PBO,
but also the only viable approach that serves some fundamental purposes. For ex-
ample, quantum annealers—such as the D-Wave chips—can solve only quadratic
unconstrained Boolean optimization problems [22]. Therefore, a quadratization
algorithm is indispensable for solving nonlinear PBO instances on quantum an-
nealers. In addition, no existing weighted MAX-SAT or ILP solver can solve
nonlinear PBO instances with arbitrary lengths of monomials. They, including
BiqMac [36], are only applicable to unconstrained binary quadratic programs.
Quadratization algorithms are therefore required for reformulating nonlinear
PBO instances to make them amenable to such solvers. In general, quadratiza-
tion algorithms are useful due to the existence of more efficient algorithms that
are dedicated to minimizing quadratic PBFs, i.e., to quadratic PBO (QPBO).
For example, a QPBO solver can make use of the peculiar properties of quadratic
PBFs, such as their roof duality [24] and the existence of polynomial-time algo-
rithms for finding partial solutions even if the PBFs are not submodular [21].

Formally, a quadratization of a PBF f(x) is a quadratic PBF g(x,y) such
that

f(x) = min
y∈Bm

g(x,y) ∀x ∈ B
n, (1)

where y is a set of m auxiliary Boolean variables. Since minimizing a quadratic
PBF is also NP-hard, quadratization algorithms should preferably be achieved
in polynomial time using a small number of auxiliary variables. Since the number
of variables largely determines the size of the search space, existing algorithms
focus on minimizing the number of auxiliary variables [3, 21].

In this paper, we develop a new polynomial-time quadratization algorithm
based on the constraint composite graph (CCG) [28–30]. We show that our CCG-
based quadratization algorithm has a theoretical advantage over the state-of-the-
art algorithms proposed in [21]. We also experimentally demonstrate that our
CCG-based quadratization algorithm outperforms the state-of-the-art quadra-
tization algorithms in terms of the required number of auxiliary variables, the
number of terms in the quadratization, and the runtime. We conduct experi-
ments on both randomly generated instances and a novel reformulation of the
uncapacitated facility location problem.

2 Preliminaries

In this section, we give a brief background on quadratizations and the CCG.



2.1 Quadratizations

A PBF is a function that maps n Boolean variables to a real number. As proved
in [18], any PBF f of n Boolean variables x = {x1, . . . , xn} can be uniquely
represented as a polynomial of the form

f(x) =
∑

S⊆x

cS
∏

x∈S

x, (2)

where cS ∈ R. Throughout this paper, we specify all PBFs in this form. We let
d denote the degree of a PBF, i.e., the maximum degree of all its monomials.

A quadratization of a PBF f(·) is a quadratic PBF g(·) that satisfies Eq. (1).
For any given PBF, its quadratizations exist but are not necessarily unique.
Since a quadratization algorithm can be seen as a preprocessing algorithm, its
effectiveness can be evaluated using two metrics: the number of auxiliary vari-
ables and the number of terms in g(·), which usually are good indicators of the
time required to solve the resulting quadratic PBF using a QPBO solver.

In terms of the number of auxiliary variables in g(·), some current state-
of-the-art algorithms are given in [21]. The first algorithm is called polynomial
expansion and is polynomial-time. It first quadratizes, i.e., finds a quadratization
of, each monomial in f(·) individually and then combines all like quadratic terms.
Polynomial expansion quadratizes a monomial ax1 . . . xd of degree d > 2 to















min
w∈B

aw (S1 − (d− 1)) if a < 0

min
{w1,...,wnd

}∈B
nd

nd
∑

i=1

wi (ci,d(−S1 + 2i)− 1) + aS2 if a > 0,
(3)

where

S1 =

d
∑

i=1

xi S2 =

d−1
∑

i=1

d
∑

j=i+1

xixj =
S1(S1 − 1)

2

nd =

⌊

d− 1

2

⌋

ci,d =

{

1 if i = nd and d is odd

2 otherwise.

Therefore, if a < 0, quadratizing this monomial requires 1 auxiliary variable; if
a > 0, it requires nd auxiliary variables1.

The second algorithm is called γ flipping. Let γ = {γ1, . . . , γn} ∈ B
n and

x
(γ)
i = γixi + γ̄ix̄i =

{

xi if γi = 1

x̄i if γi = 0.
Then, we have

f(x) =
∑

γ∈Bn

f(γ)x
(γ)
1 . . . x(γ)

n = λ+
∑

γ∈Bn

(f(γ)− λ)x
(γ)
1 . . . x(γ)

n . (4)

When using
λ = max

γ∈Bn
f(γ), (5)

1For a single positive monomial, the smallest possible number of auxiliary variables
achievable is dlog de − 1, as proven in [9].



every monomial in Eq. (4) is non-positive. Then, by following the first case in
Eq. (3), γ flipping requires exactly 2n − 1 auxiliary variables. This is superpoly-
nomial with respect to the size of input if the number of terms in Eq. (2) is, for
example, polynomial with respect to n.

The computation of Eq. (5) is the bottleneck. Its time complexity is super-
polynomial with respect to n. Hence, γ flipping is superpolynomial-time if the
number of terms in Eq. (2) is, for example, polynomial with respect to n.

2.2 Constraint Composite Graph

The CCG [28–30] is a combinatorial structure associated with an optimization
problem posed as the weighted constraint satisfaction problem (WCSP). It simul-
taneously represents the graphical structure of the variable interactions in the
WCSP and the numerical structure of the constraints in it. The task of solving
the WCSP can be reformulated as the task of finding a minimum weighted vertex
cover (MWVC) (called the MWVC problem) on its associated CCG. CCGs can
be constructed in polynomial time and are always tripartite. A subclass of the
WCSP has instances with bipartite CCGs. This subclass is tractable since an
MWVC can be found in polynomial time on bipartite graphs using a maxflow
algorithm [27]. The CCG also facilitates kernelization, message passing [14, 40],
and an efficient encoding of the WCSP as an integer linear program [39].

Given an undirected graph G = 〈V,E〉, a vertex cover of G is a set of vertices
S ⊆ V such that every edge in E has at least one of its endpoint vertices in S.
A minimum vertex cover (MVC) of G is a vertex cover of minimum cardinality.
When G is vertex-weighted—i.e., each vertex vi ∈ V has a non-negative weight
wi associated with it—its MWVC is defined as a vertex cover of minimum total
weight of its vertices. The MWVC problem is the task of computing an MWVC
on a given vertex-weighted undirected graph.

For a given graph G, the concept of the MWVC problem can be extended
to the notion of projecting MWVCs onto a given independent set (IS) U ⊆ V .
(An IS of G is a set of vertices in which no two vertices are adjacent to each
other.) The input to such a projection is the graph G as well as an IS U =
{u1, u2, . . . , uk}. The output is a table of 2k numbers. Each entry in this table
corresponds to a k-bit vector. We say that a k-bit vector t imposes the following
restrictions: (i) if the ith bit ti is 0, the vertex ui has to be excluded from the
MWVC; and (ii) if the ith bit ti is 1, the vertex ui has to be included in the
MWVC. The projection of the MWVC problem onto the IS U is then defined
to be a table with entries corresponding to each of the 2k possible k-bit vectors

t(1), t(2), . . . , t(2
k). The value of the entry corresponding to t(j) is equal to the

weight of the MWVC conditioned on the restrictions imposed by t(j). [28, Fig. 2]
illustrates this projection.

The table of numbers produced above can be viewed as a weighted constraint
over |U | Boolean variables. Conversely, given a (Boolean) weighted constraint,
we design a lifted representation for it so as to be able to view it as the projec-
tion of an MWVC onto an IS of some intelligently constructed vertex-weighted
undirected graph [28, 29]. The benefit of constructing these representations for



individual constraints lies in the fact that the lifted representation for the entire
WCSP, i.e., the CCG of the WCSP, can be obtained simply by “merging” them.

[28, Fig. 5] shows an example WCSP instance over 3 Boolean variables to
illustrate the construction of the CCG. Here, there are 3 unary and 3 binary
weighted constraints. Their lifted representations are shown next to them. The
figure also illustrates how the CCG is obtained from the lifted representations of
the weighted constraints: In the CCG, vertices that represent the same variable
are simply “merged”—along with their edges—and every “composite” vertex is
given a weight equal to the sum of the individual weights of the merged vertices.
Computing the MWVC for the CCG yields a solution for the WCSP instance;
namely, if Xi is in the MWVC, then it is assigned value 1 in the WCSP instance,
otherwise it is assigned value 0 in the WCSP instance.

3 The CCG-Based Quadratization Algorithm

PBO is a special case of the WCSP and is therefore equivalent to solving the
MWVC problem on its associated CCG. In turn, we show that the MWVC
problem itself can be reformulated as QPBO. This leads to the CCG-based
quadratization algorithm presented in this section.

Given a vertex-weighted graph G = 〈V,E,w〉 and one of its independent sets
T , the projection of the MWVC problem onto T is a table of weights of MWVCs
with all combinations of vertices in T imposed to be included in or excluded from
the MWVC [28]. More formally:

Definition 1. Let T+ ∪ T− = T and T+ ∩ T− = ∅. S is a para-vertex cover on
〈G, T+, T−〉 iff S is a vertex cover on G, T+ ⊆ S, and T− ∩ S = ∅. S is a para-
MWVC on 〈G, T+, T−〉 iff S is a para-vertex cover on 〈G, T+, T−〉 and the sum
of weights of all vertices in S is no greater than that of any other para-vertex
cover on 〈G, T+, T−〉. The projection of the MWVC problem onto T (on G) is a
function that maps 〈T+, T−〉 to the weight of a para-MWVC on 〈G, T+, T−〉.

The following theorem is inspired by [12, Theorem 3].

Theorem 1. Let us consider the finite graph G = 〈V,E,w〉 and an independent
set T = T+ ∪ T− on it. Let x = (xr : r ∈ V ) and

C(x) =
∑

p∈V

wpxp +
∑

(p,q)∈E

Jpq(1− xp)(1− xq). (6)

(i) If ∀(p, q) ∈ E : Jpq ≥ max{wp, wq}, then the projection of the MWVC
problem onto an independent set T equals the function

h(〈T+, T−〉) = min
xj∈B:j∈V \T

C(x)
∣

∣

xi=1 if i∈T+
xi=0 if i∈T−

. (7)

(ii) If further ∀(p, q) ∈ E : Jpq > max{wp, wq}, then any S∗ ⊂ V that satisfies

T+ ⊆ S∗ (8)

T− ∩ S∗ = ∅ (9)

C (S∗) = h(〈T+, T−〉) (10)



is a para-MWVC on 〈G, T+, T−〉, with C (·) defined as C (S) = C(x)
∣

∣

xi=1 if i∈S
xi=0 if i/∈S

.

Proof. Let us consider a given 〈T+, T−〉. We first prove (ii), then (i).
For (ii): We first prove by contradiction that, if Jpq > max{wp, wq}, then S∗ is

a vertex cover. Let x∗
i = 1 if i ∈ S∗ and x∗

i = 0 if i ∈ V \S∗, and x
∗ = (x∗

i : i ∈ V ).
We assume that there exists an edge (a, b) such that x∗

a = x∗
b = 0. Neither a nor

b can be in T+ because T+ ⊆ S∗. Since T is an independent set, a and b cannot
be both in T−. If we hold either of the rest cases, i.e.,

– if only one of a and b is in T− (without loss of generality, we let a ∈ T−), or
– if neither a nor b is in T−,

then a /∈ S∗ and C (S∗)−C (S∗ ∪{b}) =
∑

k/∈S∗:(b,k)∈E Jbk −wb ≥ Jab −wb > 0,

which contradicts Eq. (10).
In addition, S∗ is also a para-MWVC on 〈G, T+, T−〉 because S∗ being a

vertex cover implies
∑

(p,q)∈E Jpq(1− x∗
p)(1− x∗

q) = 0. Therefore, (ii) holds.

For (i): Let S∗′ be a para-MWVC on 〈G, T+, T−〉. Because S∗′ is a vertex
cover, the second summation of Eq. (6) in C (S∗′) equals zero and thus the weight
of S∗′ equals C (S∗′). Therefore, it is sufficient to prove that there exists such an
S∗′ that satisfies C (S∗′) = h(〈T+, T−〉), or, equivalently, C (S∗′) = C (S∗).

If C(·) is a constant function, then it is obvious that C (S∗′) = h(〈T+, T−〉). We
now consider the case where C(·) is not a constant function. Let E′ = {(p, q) ∈
E : Jpq = max{wp, wq}}. Let

C′(x) =
∑

p∈V

wpxp +
∑

(p,q)∈E

J ′
pq(1− xp)(1− xq). (11)

Here, J ′
pq =

{

Jpq if (p, q) /∈ E′

Jpq + εpq if (p, q) ∈ E′
, where ∀(p, q) ∈ E′ : εpq > 0 and they

satisfy
∑

(p,q)∈E′

εpq < ε0, (12)

where ε0 is the smallest positive value that C(x)−C(y) can be for all x,y ∈ B
|V |,

i.e., ε0 = min{C(x)−C(y) ∈ R>0 : x,y ∈ B
|V |}. Here, the operand of min cannot

be ∅ because C(·) is not a constant function.
(P) Let S∗′ ⊆ V satisfy Eqs. (8) to (10) except that C (·) in Eq. (10) is

replaced by C ′(·), defined as C ′(S) = C′(x)
∣

∣

xi=1 if i∈S
xi=0 if i/∈S

, and all occurrences of

C(·) are replaced by C′(·). According to (ii), S∗′ is a para-MWVC on 〈G, T+, T−〉.
Let x∗′

i = 1 if i ∈ S∗′ and x∗′
i = 0 if i ∈ V \ S∗′, and x

∗′ = (x∗′
i : i ∈ V ). Now we

only need to prove C (S∗′) = C (S∗), or, equivalently, C(x∗′) = C(x∗).
According to Eq. (10), C(x∗) = h(〈T+, T−〉). Therefore, C(x∗′) ≥ C(x∗).

We now only need to prove that C(x∗′) > C(x∗) cannot hold. We prove by
contradiction. Assume C(x∗′) > C(x∗). Then, according to the definition of
ε0, C(x

∗′) − C(x∗) ≥ ε0. According to Eqs. (11) and (12), C(x∗) − C′(x∗) ≥
−
∑

(p,q)∈E′ εpq > −ε0. According to Eq. (11), C′(x∗′)−C(x∗′) ≥ 0. Adding these

three inequalities, we have C′(x∗′)−C′(x∗) > 0, and thus C ′(S∗′) > C ′(S∗). This
contradicts Eq. (10) after the replacements in (P). ut
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Fig. 1: The graph gadgets for the construction of the CCG. Each vertex is associated
with a weight and a label. “xa” and “xL” are the labels of the auxiliary variables.

Based on Theorem 1, we outline a quadratization algorithm for a (nonlinear)
PBO—or more generally for a WCSP—as follows: (i) Using the polynomial-time
algorithm proposed in [28], reformulate the input PBF f(x) to the projection
of the MWVC problem on its CCG; and (ii) using Theorem 1, convert this
projection to a quadratic PBF and output it as its quadratization.

3.1 A Full Example

Consider the PBF

P (x1, x2, x3, x4) = 3x2x3 + 5x1x2x3 + 6x1x2x3x4 − 3x1x3x4 . (13)

The CCG is a composition of graph gadgets, each of which represents a mono-
mial [28]. Each monomial is related to an MWVC of a particular graph gadget
(Fig. 1). Assume a > 0 (throughout this subsection), for a monomial −ax1x2x3,
MWVC {Fig. 1a} = a − ax1x2x3, where MWVC {Fig. 1a} is the weight of the
MWVCs of Fig. 1a, i.e.,

−ax1x2x3 = MWVC {Fig. 1a} − a . (14)

For ax1x2x3, MWVC {Fig. 1b} = L(1−x3)+a−a(x1x2(1−x3)), for a sufficiently
large constant L, i.e.,

ax1x2x3 = MWVC {Fig. 1b} − L(1− x3)− a+ ax1x2 . (15)

For ax1x2x3x4, MWVC {Fig. 1d} = L(1− x4) + a− a(x1x2x3(1− x4)), i.e.,

ax1x2x3x4 = MWVC {Fig. 1d} − L(1− x4)− a+ ax1x2x3 , (16)

where ax1x2x3 can be rewritten as in Eq. (15). Here, all monomials of degree
> 2 have been rewritten as quadratic PBFs and weights of MWVCs of graph
gadgets.

Applying Theorem 1 and setting J ≥ L > a > 0, we further express the
weights of MWVCs in algebraic quadratic forms as

MWVC {Fig. 1a} = min
xa

[axa + J(1− x1)(1− xa)

+J(1− x2)(1− xa) + J(1− x3)(1− xa)]
(17)



MWVC {Fig. 1b} = min
xa,xL

[axa + LxL + J(1− x1)(1− xa)

+J(1− x2)(1− xa)+J(1− x3)(1− xL) + J(1− xL)(1− xa)]
(18)

MWVC {Fig. 1c} =min
xa

[axa + J(1− x1)(1− xa)

+J(1− x2)(1− xa)+J(1− x3)(1− xa) + J(1− x4)(1− xa)]
(19)

MWVC {Fig. 1d} = min
xa,xL

[axa + LxL + J(1− x1)(1− xa)

+J(1− x2)(1− xa) + J(1− x3)(1− xa)

+J(1− x4)(1− xL) + J(1− xL)(1− xa)] .

(20)

Here, we have quadratized all monomials of degree > 2 using the algebraic
expression of the weight of MWVCs on its graph gadget. The auxiliary variables
are named uniquely for each graph gadget. For the PBF in Eq. (13), we therefore
need 5 auxiliary variables: xa and xL for the degree-4 term, xa′ and xL′ for the
degree-3 term with positive coefficient that combines the existing degree-3 term
with the degree-3 term that comes from the reduction of the degree-4 term, and
xa′′ for the degree-3 term with negative coefficient.

3.2 Details of the CCG-Based Quadratization Algorithm

The CCG-based quadratization algorithm is an iterative algorithm. Let f(x) be
the input PBF. It initializes a polynomial f ′(x) to f(x). In each iteration, let
d be the degree of f ′(x). It substitutes each degree-d negative monomial and
positive monomial in f ′(x), respectively, using

−ax1 . . . xd =min
xa

[

axa + J

d
∑

i=1

(1− xi)(1− xa)

]

− a (21)

ax1 . . . xd = min
xa,xL

[

axa + LxL + J

d−1
∑

i=1

(1− xi)(1− xa)

+ J(1− xd)(1− xL) + J(1− xL)(1− xa)

]

−L(1− xd)− a+ ax1 . . . xd−1,

(22)

where J ≥ L > a > 0. It then combines all like terms in f ′(x). Because the
right-hand sides of Eqs. (21) and (22) are of degrees that are lower than the
left-hand sides, the degree of f ′(x) decreases by at least 1 after each iteration.
The iterating procedure terminates until the degree of f ′(x) is no larger than 2.
Finally, the algorithm outputs f ′(x) as the quadratization.



4 Evaluation

In this section, we evaluate our CCG-based quadratization algorithm both the-
oretically and experimentally, and illustrate its uses and advantages on a real-
world problem.

4.1 Theoretical Results

In this subsection, we theoretically compare our CCG-based quadratization al-
gorithm with the state-of-the-art algorithms in [21] in terms of the number of
auxiliary variables. For any PBF of degree d on n variables, the maximum num-
ber of non-zero monomials of each degree i ≤ d is

(

n
i

)

. For polynomial expansion,
the worst case occurs when all coefficients of non-zero monomials are positive2.
From Eq. (3), each positive monomial of degree i ≥ 3 generates

⌊

i−1
2

⌋

auxil-
iary variables. Therefore, the number of auxiliary variables in the worst case

is Nall+(n, d) =
∑d

i=3

(

n
i

) ⌊

i−1
2

⌋

= O
(⌊

d̂−1
2

⌋

n!
d̂!(n−d̂)!

)

= O
(⌊

d̂−1
2

⌋

nd̂

d̂!

)

, where

d̂ = min{dn/2e , d} and the expression is with respect to asymptotically large n.
For the CCG-based quadratization algorithm, the worst case also occurs when

all monomials are positive. Each positive monomial of degree i ≥ 3 generates 2
auxiliary variables (i.e., Xa and XL in Eq. (22)) when it is reduced to the sum
of a quadratic polynomial and a monomial of degree i − 1, which can then be
combined with existing monomials of degree i−1 if they are composed of the same
variables. This combination of monomials can take place in each iteration, until
the whole PBF becomes quadratic. In the worst case, only positive monomials
remain after the combining step of each iteration, and therefore the number of

auxiliary variables is
∑d

i=3 2
(

n
i

)

= O
(

n!
d̂!(n−d̂)!

)

= O
(

nd̂

d̂!

)

.

In the best case, where all monomials are negative (assuming that all mono-
mials up to degree d are present), both polynomial expansion and the CCG-based
quadratization algorithm need just one auxiliary variable for each monomial, i.e.,

Nall-(n, d) =
∑d

i=3

(

n
i

)

= O
(

n!
d̂!(n−d̂)!

)

= O
(

nd̂

d̂!

)

.

Table 1 summarizes our theoretical results. It shows that the CCG-based
quadratization algorithm is advantageous over both polynomial expansion and
γ flipping in terms of the required number of auxiliary variables. γ flipping
has the same complexity regardless of the number of monomials in the input
PBF, which is undesirable for PBFs that do not have an exponential number
of monomials. In the best case, the numbers of auxiliary variables required by
polynomial expansion and the CCG-based quadratization algorithm are only
polynomial in n, while that of γ flipping is exponential in n.

4.2 Experimental Results

In this subsection, we focus on an experimental comparison of polynomial ex-
pansion and the CCG-based quadratization algorithm, since both of them have

2We follow the worst case definition in [21].



Table 1: Number of auxiliary variables for different quadratization algorithms as a
function of the number of variables n and d̂ = min{dn/2e , d}, where d is the degree of
the PBF.

if n 6= d if n = d

Polynomial expansion (worst case) O

(

⌊

d̂−1
2

⌋

nd̂

d̂!

)

2d−2(d − 3) + 1

CCG-based (worst case) O

(

nd̂

d̂!

)

2d+1 − 2 − 2d − d(d − 1)

Polynomial expansion and CCG-based (best case) O

(

nd̂

d̂!

)

2d − 1 −
d(d+1)

2

γ flipping 2n − 1 2d − 1

Table 2: Number of auxiliary variables, number of terms in the quadratization, runtime
of the quadratization algorithm, and runtime of the QPBO solver for the minimization
of the quadratization. All reported numbers are averaged over 10 instances with n = d
and m = 2d monomials. Numbers after ± are standard deviations. The monomial
coefficients are integers chosen randomly from [1, 300]. The smaller numbers of auxiliary
variables and terms of quadratizations of each column are highlighted.

d 3 10 11 12 13 14 15

original number of terms 8 1024 2048 4096 8192 16384 32758

number of
auxiliary variables

Poly 1 1793 4097 9217 20481 45057 >24 hrs

CCG 2 1936 3962 8034 16200 32556 65294

number of terms

Poly 11 12089 29508 70736 167005 389227 >24 hrs

CCG 14 7988 17162 36572 77482 163444 343610

quadratization time (s)3

Poly 0.0006
10.87

±0.348
58.84
±2.43

341.19
±27.87

3435.50
±39.34

17241.10
±98.35

>24 hrs

CCG 0.0006
1.828

±0.007
5.133

±0.006
23.16
±0.10

104.58
±1.94

584.33
±21.90

3396.50
±9.63

QPBO (s)4

Poly
0.0197
±0.003

0.0835
±0.0023

0.5086
±0.0090

2.7316
±0.081

14.5621
±1.01

88.362
±5.12

>24 hrs

CCG
0.0080

±0.00049
0.0043

±0.00024
0.0132

±0.00082
0.0616

±0.0018
0.2968

±0.0065
1.3018

±0.0333
5.5763

±0.5098

time complexities that are polynomial in d. We implement both algorithms in
Python 2.7. Although pseudo-Boolean (PB) competitions have been regularly
held [32], none of their instances have objective functions that are nonlinear
PBFs. Therefore, we generate our own instances. We experiment with random
instances and instances that model real-world facility location problems. These
instances have a range of d wider than that of the problem of image denoising
used in [21], which always has d = 4.

To generate random instances with a PBF on n variables, we generate each
monomial with degree i randomly chosen from {0, . . . , d}. Such a monomial has i
unique variables randomly chosen from {1, . . . , n} along with a non-zero random
integer coefficient. If a newly generated monomial is on the same variables as

3Intel Xeon 4-core 2.3 GHz/6-core 2.6 GHz
4Intel Core i7-4960HQ Processor 6M Cache 2.60 GHz 8 GB SDRAM



Table 3: Similar to Table 2, except that the monomial coefficients are non-zero integers
chosen randomly from [−300, 300].

d 3 10 11 12 13 14 15

original number of terms 8 1024 2048 4096 8192 16384 32758

number of
auxiliary variables

Poly 1
1371.7

±13.50
3022.1

±28.75
6630.3
±39.16

14317
±43.35

30580
±111

65623
±193

CCG
1.5

±0.52
1545

±14.5
3182

±18.3
6503

±25.9
13091

±49.9
26397

±41.1
52908

±70

number of terms

Poly 11
9002.7
±120.2

21205.8
±227.1

49758.7
±379.4

114482
±493.3

259370
±1055

588832
±2111

CCG
12.5

±1.58
7205.4

±28.2
15601

±36.3
33504

±51.9
71251

±81.3
151089

±75.8
318781

±150

quadratization time (s)3

Poly 0.0006
4.01

±0.18
23.22
±0.91

133.5
±0.71

1048.8
±3.20

5724.5
±747.7

84538
±788.1

CCG 0.0006
0.9516
±0.011

4.21
±0.022

19.14
±0.057

133.9
±0.58

594.8
±73

3046
±475

QPBO (s)4

Poly
0.0196

±0.0012
0.0420

±0.0094
0.27

±0.0536
1.67

±0.3289
8.43

±0.0380
43.2

±7.67
376.1
±15.2

CCG
0.0071

±0.00021
0.0049

±0.00052
0.0155

±0.0025
0.058

±0.011
0.37

±0.010
1.10

±0.26
4.38

±0.90

those of already generated monomials, it is rejected and a new one is generated.
We also check that at least one of the m terms generated in this way is of degree
d. For polynomial expansion, we also add up all quadratic like terms in the
resulting quadratization (which can be expensive since polynomial expansion
can potentially generate a lot of like terms in Eq. (3)). We use the QPBO solver
from [26] for the minimization of the quadratizations. We run it via the open-
source MATLAB wrapper qpboMex [34] on MATLABR2016a and measure the
actual wall-clock time. For the CCG-based quadratization algorithm, all wall-
clock times include the runtime of the CCG construction. For each monomial
coefficient a, the CCG-based quadratization algorithm for all experiments uses
J = L + 1 and L = a + 1. The exact values of these parameters do not matter
insofar as the condition J ≥ L > a > 0 holds.

For polynomial expansion and the CCG-based quadratization algorithm, we
first compare the numbers of auxiliary variables, the numbers of terms in the
quadratizations, the runtime of the quadratization algorithms, and the runtime
of the QPBO solver for minimization of the quadratizations. The runtime of the
quadratization algorithm, referred to as its quadratization time, also includes
the time for combining like terms. While depending mostly on the number of
auxiliary variables, the quadratization time also depends on the number of like
terms combined in the quadratization algorithm and the number of terms in
the quadratization. Table 2 reports these comparisons for PBFs with all posi-
tive monomials. In each instance, the number of monomials is maximized, with
integer coefficients chosen randomly from the interval [1, 300]. Table 2 shows the
average and standard deviation for the results of the worst-case scenario over 10
instances where n = d and the number of monomials is m = 2d. The CCG-based
quadratization algorithm significantly outperforms polynomial expansion in all
four metrics as d increases.



Table 4: Similar to Table 2, except that all reported numbers are averaged over 100
instances, n = 15, m = 500, and the monomial coefficients are non-zero integers chosen
randomly from [−300, 300].

d 3 4 5 6 7 8 9 10 11

original number of terms 500 500 500 500 500 500 500 500 500

number of
auxiliary variables

Poly
394.05

±0.2179
405.71

±2.7
491.56

±9.23
538.27

±10.43
614.47

±17.73
666.57

±19.45
733.76

±22.15
789.70

±23.12
859.77

±26.37

CCG
584.11
±9.91

720.21
±20.62

905.18
±29.41

1088.23
±43.52

1271.9
±55.54

1438.61
±61.74

1591.95
±63.92

1742.11
±70.80

1873.79
±75.93

number of terms

Poly
1637.18

±0.887
1896.20

±15.02
2596.18

±61.81
3121.74

±75.32
3954.80

±154.1
4662.54

±181.1
5607.75

±214.2
6498.62

±249.0
7630.98

±314.8

CCG
2029.31
±19.92

2642.21
±58.01

3473.31
±98.33

4374.41
±155.8

5346.31
±220.1

6331.16
±262.8

7343.51
±275.9

8397.41
±323.4

9430.44
±374.6

quadratization time (s)3

Poly
0.1147

±0.0096
0.1783

±0.0122
0.3170

±0.0261
0.5284

±0.0624
0.8172

±0.0928
1.1943

±0.1459
1.6922

±0.1574
2.3604

±0.2247
3.2838

±0.3174

CCG
0.1126

±0.0066
0.1730

±0.0121
0.2754

±0.0211
0.4289

±0.0428
0.5937

±0.0534
0.8082

±0.0741
1.0397

±0.0799
1.3350

±0.1003
1.6727

±0.1312

QPBO (s)4

Poly
0.0013

±0.0003
0.0019

±0.0002
0.0032

±0.0004
0.0048

±0.0006
0.0076

±0.0010
0.0105

±0.0018
0.0148

±0.0032
0.0205

±0.0045
0.0291

±0.0063

CCG
0.0011

±0.0001
0.0015

±0.0002
0.0020

±0.0001
0.0027

±0.0002
0.0035

±0.0003
0.0043

±0.0003
0.0052

±0.0007
0.0062

±0.0006
0.0071

±0.0006

Table 3 reports a comparison similar to Table 2 for the “average” cases, i.e., in
each instance, n = d and the number of monomials is 2d but the coefficient of each
monomial is a non-zero integer chosen randomly from the interval [−300, 300].
Here, too, the CCG-based quadratization algorithm significantly outperforms
polynomial expansion in all four metrics as d increases.

Table 4 reports a comparison similar to Table 2 for the case where n = 15 > d.
Here, the degree i of each monomial is randomly chosen from {0, . . . , d}. Then,
i unique variables are chosen randomly from {1, . . . , n} to construct this mono-
mial along with a non-zero integer coefficient for it chosen randomly from the
interval [−300, 300]. m = 500 such monomials are generated and we report av-
erages over 100 instances. Table 4 shows that the CCG-based quadratization
algorithm continues to outperform polynomial expansion in the quadratization
time and the runtime of the QPBO solver as d increases, although it uses more
auxiliary variables and results in a quadratization with more terms. The reason
is that the CCG-based quadratization algorithm derives its advantage from the
recursive combinations of monomials, and the probability that these combina-
tions take place decreases as the gap between

∑d
i=0

(

n
i

)

, the maximum number
of terms a degree-d PBF can have, and m, the actual number, increases. (As this
gap increases, it is more difficult to encounter monomials that are of the same
variables during each reduction process in the CCG-based quadratization algo-
rithm). Nonetheless, the CCG-based quadratization algorithm is more efficient
than polynomial expansion in its quadratization time since polynomial expansion
not only generates more quadratic like terms for each monomial but also con-
siders each monomial individually and altogether accumulates many quadratic
like terms to be added up.

We finally investigate the role ofm in comparison to the worst-case number of
monomials. Table 5 reports a comparison similar to Table 2 for the case of vary-



Table 5: Similar to Table 2, except that n = d = 12, m varies in density 100m/2d, and
the monomial coefficients are non-zero integers drawn randomly from [−300, 300].

d 12 12 12 12 12

original number of terms (density) 10% 20% 80% 90% 100%

number of
auxiliary variables

Poly
671

±20.1
1295

±23.8
5287

±35.6
6062

±40.3
6641

±43.3

CCG
1219

±28.3
2031

±35.6
5612

±49.8
6005

±40.3
6510

±46.2

number of terms

Poly
5645

±20.9
10769
±30.0

39996
±320.9

45019
±380.1

49812
±410.3

CCG
6025

±24.1
10142

±28.6
28733

±95.5
31264

±102.2
33519

±106.8

quadratization time (s)3

Poly
1.74

±0.03
6.31

±0.05
108.07
±10.1

136.05
±12.2

186.50
±20.16

CCG
0.68

±0.06
1.92

±0.05
16.80
±2.80

20.51
±3.23

24.24
±5.75

QPBO (s)4

Poly
0.0157
±0.017

0.0825
±0.018

1.1389
±0.210

1.50
±0.232

1.66
±0.243

CCG
0.0029

±0.0005
0.0068

±0.0015
0.0397

±0.0079
0.042

±0.0079
0.054

±0.0082

ing density, i.e., 100m/2d in percentage. We set n = d = 12 and report averages
over 10 instances. We observe that the advantages of the CCG-based quadrati-
zation algorithm become more pronounced as the density increases. While the
CCG-based quadratization algorithm is advantageous in quadratization time
and runtime of the QPBO solver for all densities, it becomes more useful in the
number of auxiliary variables and the number of terms in the quadratizations as
the density increases.

4.3 Case Study: The Uncapacitated Facility Location Problem

We consider a real-world problem called the uncapacitated facility location prob-
lem (UFLP), also known as the simple plant location problem. The UFLP can
also be used to model other real-world problems such as vehicle dispatching. This
problem is NP-hard and can be reformulated as a nonlinear PBO [2,5, 19, 20].

Formally, the UFLP is characterized by a set of locations I = {1, . . . ,M} and
a set of users J = {1, . . . , N}. Let fi be the fixed cost of opening and operating
a facility at location i ∈ I. Each user j ∈ J is required to be served by exactly
one facility. An M × N matrix C = [cij ] specifies the transportation cost of
delivering products from a facility at location i to user j. The goal is to open
facilities at a subset S ⊆ I of locations that minimizes the sum of fixed costs
and transportation costs, i.e.,

∑

i∈S

fi +
∑

j∈J

min
i∈S

cij . (23)

In [5, 19], the following method is used for reformulating the UFLP as a
nonlinear PBO. For each column j in C, we assume a non-decreasing ordering
of its elements as

c
i
j
1
≤ c

i
j
2
≤ · · · ≤ c

i
j
M

. (24)



We denote the difference between consecutive elements as

∆c0j = c
i
j
1
, (25)

∆clj = c
i
j
l+1

− c
i
j
l

, 1 ≤ l < M . (26)

Let zi =

{

0 if i ∈ S

1 otherwise
for each i ∈ {1, . . . ,M} and z = (z1, . . . , zM ). For any

valid solution S, we have z 6= (1, . . . , 1), and therefore ∀j ∈ J : mini|zi=0 cij =

∆c0j+
∑M−1

l=1 ∆cljzij1
. . . zij

l

. Therefore, according to Eq. (23), the transportation

cost is
∑

j∈J mini∈S cij =
∑N

j=1

{

∆c0j +
∑M−1

l=1 ∆cljzij1
. . . zij

l

}

and the fixed

cost is
∑

i∈S fi =
∑M

i=1 fi(1− zi). Hence, the total cost is

M
∑

i=1

fi(1− zi) +
N
∑

j=1

{

∆c0j +

M−1
∑

l=1

∆cljzij1
. . . z

i
j
l

}

. (27)

The UFLP is equivalent to computing

argmin
z

{

M
∑

i=1

fi(1− zi) +
N
∑

j=1

{

∆c0j +

M−1
∑

l=1

∆cljzij1
. . . z

i
j
l

}}

subject to: z 6= (1, . . . , 1),

which, in turn, is equivalent to computing

argmin
z

{

M
∑

i=1

fi(1− zi) +

N
∑

j=1

{

∆c0j +

M−1
∑

l=1

∆cljzij1
. . . z

i
j
l

}

+ λ
M
∏

i=1

zi

}

,

where λ > maxi∈I fi. All nonlinear terms have positive coefficients because of
Eq. (24). The degree of the resulting PBF is determined by the number of facil-
ities. While different columns of C potentially use different orderings, the same
ordering can be applicable to different columns. The number of unlike terms in
the PBF is determined by the number of different orderings, which is generally
affected by the number of users.

We perform experiments to compare the performance (in terms of the number
of auxiliary variables) of polynomial expansion and the CCG-based quadratiza-
tion algorithm on PBFs resulting from UFLP instances. As reported in [21] and
Tables 2 to 5, the number of auxiliary variables is the most important compari-
son parameter and is also indicative of the quadratization time and the runtime
of the QPBO solver. We set the number of locations M = 12, which results
in PBFs of degree 12. We vary the number of users N , which results in PBFs
of varying densities. Except that the linear term coefficients are negative, this
resembles the case of d = 12 in Table 2. For each instance, we randomly select
the fixed costs of the facilities and the transportation costs from location i to
user j. As the number of users increases, we plot the number of terms in the
PBFs in Fig. 2a and the number of auxiliary variables for each quadratization
algorithm in Fig. 2b.
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Fig. 2: UFLP experimental results. (a) shows M = 12 facility locations and N users.
10 instances are generated for each N . For each instance, the fixed cost for location i
is an integer chosen randomly from [1, 10000]. The transportation cost from location
i to user j is an integer chosen randomly from the interval [1, 100]. The density of
the PBF is defined as the number of terms in the PBF divided by 2M . (b) compares
the number of auxiliary variables in the quadratizations of polynomial expansion and
the CCG-based quadratization algorithm on all PBFs in (a). The y-axis indicates the
number of auxiliary variables for each quadratization algorithm.

Figure 2a shows that, as more users are added, the density increases rapidly
at first and quickly approaches 1. Figure 2b shows that polynomial expansion
is preferable when the number of users is small but is quickly outperformed
by the CCG-based quadratization algorithm as the number of users increases.
This observation is consistent with the results in Table 5, which show that the
CCG-based quadratization algorithm is more beneficial for higher densities. For
the UFLP, the superior performance of the CCG-based quadratization algorithm
with respect to the number of auxiliary variables is due to three possible reasons:
(i) The degrees of the resulting PBFs are usually high, (ii) the coefficients of the
nonlinear terms in these PBFs are all positive, and (iii) the PBFs become denser
with a higher number of users.

5 Conclusion

We developed the CCG-based quadratization algorithm for the nonlinear PBO
on general PBFs and compared it to state-of-the-art algorithms. We first proved
the theoretical advantages of the CCG-based quadratization algorithm over
other algorithms. We then experimentally verified these advantages. We observed
that our CCG-based quadratization algorithm not only significantly outperforms
other algorithms on medium-sized and large PBFs but is also preferable for
smaller PBFs, to which asymptotic theoretical results are not directly applica-
ble. We also showed that the CCG-based quadratization algorithm is applicable
to real-world problems such as the UFLP, especially when the number of users
to deliver products to is large.
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9. Boros, E., Crama, Y., Rodŕıguez-Heck, E.: Quadratizations of symmetric pseudo-
Boolean functions: Sub-linear bounds on the number of auxiliary variables. In: the
International Symposium on Artificial Intelligence and Mathematics (2018), http:
//isaim2018.cs.virginia.edu/papers/ISAIM2018_Boolean_Boros_etal.pdf

10. Boros, E., Gruber, A.: On quadratization of pseudo-Boolean functions. arXiv
preprint arXiv:1404.6538 (2014)

11. Boros, E., Hammer, P.L., Minoux, M., Rader Jr, D.J.: Optimal cell flipping to min-
imize channel density in VLSI design and pseudo-Boolean optimization. Discrete
Applied Mathematics 90(1–3), 69–88 (1999)

12. Choi, V.: Minor-embedding in adiabatic quantum computation: I. the param-
eter setting problem. Quantum Information Processing 7(5), 193–209 (2008).
https://doi.org/10.1007/s11128-008-0082-9
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